Deep Learning Related Projects
|
B. Zha, M. T. Koroglu and A. Yilmaz. Trajectory Mining for Localization using Recurrent Neural Network. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, 2019, pp. 1-4. J. Wei, M. T. Koroglu, B. Zha and A. Yilmaz. Pedestrian localization on topological maps with neural machine translation network. 2019 IEEE SENSORS, Montreal,Canada, 2019, pp. 1-4. |
![]() |
J. Wan, A. Yilmaz and L. Yan. October 2019. PPD: Pyramid Patch Descriptor via Convolutional Neural Network. Photogrammetric Engineering and Remote Sensing. Volume 85, Number 9, September 2019, pp. 673-686. DOI: 10.14358/PERS.85.9.673
J. Wan, A. Yilmaz, L. Yan. December 2018. DCF-BoW: Build Match Graph Using Bag of Deep Convolutional Features for Structure from Motion. IEEE Geoscience and Remote Sensing Letters. Vol. 15, No: 12, pp. 1847-1852. DOI: 10.1109/LGRS.2018.2864116
J. Wan and A. Yilmaz. June 2018. DCF: A method for creating image relation table using a deep convolutional network. Acta Geodaetica et Cartographica Sinica (AGCS) Machine Vision Special Issue. Vol. 47. No 6. pp. 882-891. |
![]() |
N. Gard and A. Yilmaz. April 2019. A Spacetime Model for One-shot Active Contour Extraction Scheme for Human Detection in Image Sequences. Elsevier Journal of Applied Mathematics and Computation |
![]() |
Z. Koppanyi, D. Iwaszczuk, B. Zha, C. Saul, C. Toth and A. Yilmaz. August 2019. Multi-Modal Semantic Segmentation: Fusion of RGB and Depth Data in Convolutional Neural Networks. In Multi-Modal Scene Understanding. Edited by Bodo, M. Yang and Vittorio. Elsevier. ISBN: 9780128173589 D. Iwaszczuk, Z. Koppanyi, N. A. Gard, B. Zha, C. Toth, A. Yilmaz. 10/2018. Semantic Labeling of Structural Elements in Buildings by Fusing RGB and Depth Images in an Encoder-Decoder CNN Framework. ISPRS TCI Midterm Symposium on Innovative Sensing - From Sensors to Methods and Applications. Karlsruhe, Germany
|
![]() |
J.H. Lee, A. Yilmaz, R. Denning, T. Aldemir. November 2018. Use of dynamic event trees and deep learning for real-time emergency planning in power plant operation. Nuclear Technology Journal, Special Issue on Big Data Analytics for Nuclear Power. DOI: 10.1080/00295450.2018.1541394 B. Zha, A. Yilmaz, T. Aldemir. 11/2019. Off-site Dose Prediction for Decision Making Using Recurrent Neural. ANS Winter Meeting. Washington DC. J. Lee, T. Aldemir, A. Yilmaz and R. Denning. 09/2018. Development of an Online Operator Tool to Support Real-Time Emergency Planning Based on the Use of Dynamic Event Trees and Deep Learning. Probabilistic Safety Assessment and Management (PSAM). Los Angeles California. |
![]() |
O Nina, W Garcia, S Clouse, A Yilmaz. 2018. MTLE: A Multitask Learning Encoder of Visual Feature Representations for Video and Movie Description. arXiv preprint arXiv:1809.07257 O. Nina, W. Garcia, S. Clause and A. Yilmaz. 12/ 2018. A Multitask Learning Encoder-Decoders Framework for Generating Movie and Video Captioning. Neural Information Processing Systems Workshop on AI for Social Good. Montreal, Canada. |
B. Zha. M. Bai, H. Sezen and A. Yilmaz. 09/2019. Deep Convolutional Neural Networks For Classification In Comprehensive Structural Health Monitoring. 12th International Workshop on Structural Health Monitoring. San Jose, CA. |
|
![]() |
Xiao and A. Yilmaz. 06/2017. Visual Tracking Utilizing Object Concept from Deep Learning Network. ISPRS Annals of Photogrammetry and Remote Sensing Spatial Information Science, IV-1-W1, 125-132, https://doi.org/10.5194/isprs-annals-IV-1-W1-125-2017. Hannover, Germany |
![]() |
|
![]() |